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An algorithm has been developed for computer simulation of molecular dynamics. The 
algorithm, called the “method of lights,” is based on sorting and on reformulating the way in 
which neighbor hsts are constructed. It uses data structures compatible with either traditional 
scalar computer architecture or specialized vector statements which perform computations in 
parallel. The algorithm has been implemented on the CYBER 205’ computer. Tests indicate 
that the method reduces running time over standard methods in scalar form, and that “vec- 
torization” produces an order-of-magnitude decrease m execution time. 0 1985 Academic Press, 

IX 

1. INTRODUCTION 

Computer simulation of molecular dynamics is by now a well-established and 
important technique in condensed matter physics and chemistry. Simply stated, it 
consists in solving Newton’s equations for a collection of atoms or molecules which 
are assumed to interact according to some postulated (usually pair-wise) force law. 
The solution of these equations is then used to determine thermodynamic and 
transport properties of a dense system, such as a liquid. Greater speed and wider 

* Certain commercial equipment, instruments, or materials are identified in this paper in order to 
adequately specify the computational procedure. Such identification does not imply recommendation or 
endorsement by the National Bureau of Standards, nor does it imply that the materials or equipment are 
necessarily the best available for the purpose. 
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availability of computers has led to increased use of simulation techniques, making 
possible recent rapid advances in the understanding of the liquid state [IO]. 

For very large simulations, vector-processing “supercomputers” offer great poten- 
tial for reducing run time. In order to make effective use of these machines, 
algorithms must be designed to be “vectorizable,” that is, compatible with 
language-based and machine-based structures for parallel processing. A new 
algorithm based on sorting has been developed. The algorithm, called the “method 
of lights,” can be implemented with either scalar or vector arithmetic; it is more 
efficient than existing techniques even on scalar machines. Tests indicate that on 
vector machines the method greatly reduces running time and thus helps to make 
very large scale simulations a practical possibility. 

Determination of the forces acting between the particles as functions of the par- 
ticle positions is a time-consuming calculation which must be performed at each 
time step in a simulation. Every particle interacts with every other so that, in prin- 
ciple, for IZ particles there are, O(n’) forces which need to be computed at each time 
step. In most cases, however, the force falls off rapidly as a function of distance, and 
a particle can be assumed to interact only with its nearby neighbors. Typically, a 
neighbor list is constructed and periodically updated as the simulation progress 
[ 111. While impressive reductions in execution time have resulted using the 
neighbor list method, the algorithms have not been designed to take advantage of 
the architecture of vector machines. We have concentrated on reformulating the 
structure of the neighbor list and the procedures for updating it. 

In the following section we give a general description of the algorithm and some 
details concerning implementation. This information is general and applicable to 
any computer. In Section 3 we take up the “vector” version of the algorithm. The 
principal task is to vectorize the method for generating the neighbor list described 
in Section 2; however, we also modify the sorting method and the computation of 
particle accelerations used in the integration routine. Tirning data are given for the 
vector version. In Section 4 we comment briefly on some other possibilities for 
neighbor list algorithms. The remainder of the present section presents a general 
description of the model and the methodology for calculating interactions between 
particles. 

The model consists of an ensemble of interacting molecules in a 2- or 3-dimen- 
sional “box.” Periodic boundary conditions are imposed so that in effect all of space 
is filled with identical boxes. This periodicity must be taken into account in deter- 
mining neighbors, as is illustrated for two dimensions in Fig. 1, Particles near, for 
example, the upper right corner of the box are neighbors of those in the lower left 
corner. 

Interactions between particles are determined by a potential law. We use a soft 
sphere potential, so that the (purely repelling) potential averages for the ith 
molecule are given by 

V(r,)=C z- ( > 
12 

,I % 
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FIG. 1. Periodic boundary conditions. 

Here j ranges over all particles different from i, R, is the distance from particle i to 
particle j and IJ is the unit of length. The acceleration of molecule i at position ri is, 
thus, 

a,(r,) = -W(r,)/m. 

Here m, the molecular mass, can be taken as equal to 1. The method of integration 
we use is that recommended by Beeman [2]. 

In the simulations since length is in units of G and energy is in units of E, the unit 
of time is 

z = (ma2/e)1’2. 

In the sum for the potential of the ith molecule, terms for which RJcr > R = 1.5 
are set to zero and the neighbors of a given particle are just those particles with dis- 
tance less than or equal to R. In computing the force on particle i, we consider 
those particles, j with R, < R + 6. Because of the extra thickness 6 and the fact that 
the step size is sufficiently small so that particles do not move beyond the 6 between 
updates, the neighbor information needs to be updated only once every few time 
steps and saved in the neighbor list. 

In software written for conventional scalar machines, it is common to save 
storage by structuring this list as a l-dimensional array in which sets of neighbors 
for each particle are separated by zeroes. This provides efficient utilization of 
storage, since pairs of neighbors need to be stored only once. However, this device 
is not efficient for parallel processing. Hence for vectorization we make the list a 2- 
dimensional array. More detail is given in Section 3. 

2. THE METHOD OF LIGHTS 

The procedure for determining neighbors is based on sorting the particles 
independently according to values of each coordinate. Information from the 
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separate sorted orders can be used to obtain X, Y, and Z ranges which are then 
combined to generate a cubical box neighborhood for each particle which includes 
the sphere of radius of R + 6. 

For simplicity, we limit discussion to the 2-dimensional case and all lengths are 
scaled by the length of the side of the box. Implementation in the model for three 
dimensions is based on the obvious extensions. (See Fig. 2.) 

Because all of the forces were set to zero for which R,/G > R, the neighbors 
included in the box but in the sphere have no effect on the acceleration. The first 
step is to sort the particles according to X- coordinate values, and independently by 
Y values. While the sorting can be done by a conventional O(n log n) method, 
improvements are achievable for both scalar and vector algorithms. The neighbor 
list is retained for several time steps before updating it so that on all steps after the 
first the lists are already approximately ordered before the sort is performed. To 
take advantage of this approximate ordering we use the “Smoothsort” algorithm 
due to Dijkstra [S]. This algorithm is O(n log n) for a completely disordered list 
but O(n) for an ordered list, with a smooth transition from one to the other. Our 
program for scalar machines incorporates Dijkstra’s method. In the vector case, 
however, we use a method similar to the non-contingent “Diamondsort” [4]. 
Although Diamondsort does not take advantage of the existing ordering, it is 
extremely efficient on vector machines [S]. 

A square neighborhood for each particle is described by pairs of pointers which 
indicate ranges in the lists of sorted particles. We are given lists of coordinates Xi, 
Y,, 1< i 6 N. In sorting the X and Y coordinates we need to retain the original 
indices as well as generate the sorted ones; hence, we define auxiliary arrays LQCX 
and LQCY and use indirect addressing. These arrays contain the original indices in 
sorted order so that 

and 

c YLOCY,~ < yLocY*~...I < LOCYJ 

FIG. 2. Square neighborhood. 
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The pointers which describe the square neighborhood cell are generated as follows: 
given a pointer into the array of increasing X values only two more pointers, JB 
and JE, are required to indicate which particles have X coordinates within R + 6 of 
particle LOCX,. These pointers are saved in JBS,,,, and JESLocx, respectively. 
Then i is incremented and JB and JE are incremented until ranges for LOCX, + 1 are 
found. (See Fig. 3.) 

The periodic boundary conditions are treated by adding or subtracting 1.0 in the 
calculation of distance. For example, when the upper index JE reaches N, it is reset 
to 1 and 1.0 is added to XLoCXIE, as shown in Fig. 4. 

The algorithm for updating and saving of pointers is essentially a “DO WHILE” 
loop. Advancing the JE pointer, for example, is done as follows: 

ADDX = 0.0 
(for 1 <K<NJ 

SX(K) =X(LOCX(K)) 
. 

DO 50 1=2, N 
{Initialize JE and JB for particle LOCX(l) I, 

30 IF((SX(JE) + ADDX) - SX(1))GT.R + 6) GO TO 40 
JE=JE+l 
IF (JE.GT.N) THEN 

JE=l 
ADDX = 1.0 

END IF 
GO TO 30 

4. JBs! (Locx(I)) p$ar code for JB > 

JES(LOCX(1)) = JE 
50 CONTINUE 

1 
- YLOCY KE 

- YLOCYKB 

t t 

XLOCXJB XLOCXJE 

FIG. 3. X and Y ranges. 
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FIG. 4. Periodic boundary In X. 

Pointers KB and KE for the Y-ordered list are generated similarly. Thus, the cell 
associated with particle i consists of the list of all particles j such that 

x LOCXJBS, G x, G XLOCXIES 

and simultaneously, 

with appropriate modifications for the periodic boundary conditions. This list, in 
fact, is the intersection of the sets of indices associated with the X and Y neighbors 
and its computation can be facilitated by using an additional array RGY of indirect 
addresses. For each j, RGY, is the rank position in the Y-sorted order at which j 
appears, so that 

RGY LOCY, = LOWGY, =.J 

This formulation provides a simple method for generating RGY. It is helpful to 
think of RGY as pointing from the array YJ into the sorted order and of LOCY as 
pointing from the sorted order back to Y,. 

Using array RGY, the neighbors of particle i are just the LOCX of those js 
satisfying 

JBS, <j < JES, 

and simultaneously 

KBS, < RGYLocx, 6 KES,. 

(Again, the obvious modifications must be made in order to handle the periodic 
boundary conditions.) 

The theoretical complexity of this method depends mostly on how R, the 
radius of interaction, varies as a function of n. For the scalar case the sorting time is 
between O(n) and O(n log n). Determining the arrays JBS, JES, KBS, and KES is 
O(n). As we have seen, filling the neighbor list requires computing, for each i, the 
intersection of the sets of indices of X and Y neighbors. This time is proportional to 
the size of these sets, which in turn is proportional to nR. Thus, the asymptotic 
complexity should look like O(n*R). In general, since the number of particles per 
unit area or volume is approximately constant, the average number of neighbors 
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per particle is constant, i.e., nR2 is constant. Hence, for a 2-dimensional problem, 
O(n2R) is between O(n) and O(n3j2). In three dimensions nR3 is the constant and 
n2R grows like n513. 

3. VECTORIZATION OF THE METHOD OF LIGHTS 

The FORTRAN available on the CYBER 205 has been augmented with a num- 
ber of functions to permit explicit manipulation of vectors. These allow the 
programmer to specify vector computations which would not ordinarily be 
recognized as such, even by an optimizing compiler. However, vectorization and, in 
particular, use of the augmented FORTRAN requires that programs be designed to 
take advantage of these capabilities. 

We briefly summarize the vector notation. Vectors are similar to, but not exactly 
the same as, l-dimensional arrays. A vector is designated by specifying its starting 
point and its length. Thus, if Z(l; 10) is the vector which corresponds to the entire 
lo-element array 4 Z(3; 5) is a vector consisting of elements three to seven of Zj and 
M(2, 3; 3) is the vector of elements (M(2, 3), M(3, 3), M(4,3)). Vectors can be 
referred to either explicitly, as in these examples, or by assigning a “designator” to 
the vector. Designators are vector variables which are assigned to specific vectors 
using an ASSIGN command. The statement 

ASSIGN DES, Z(4; 2) 

assigns the designator name DES to the vector [Z(4), Z(5)]. Both notations are 
used in the examples in this section. 

Procedures for vectorization were applied in three segments of the code: (1) iden- 
tifying particle neighbors to create the list; (2) sorting by X, Y, and Z coordinates; 
(3) calculating the accelerations. In some cases, the original algorithm required 
significant restructuring in order to apply vector functions. Timings for each 
segment before and after vectorization are shown in the table below. Times are for 
the 3-dimensional case with n = 1000 and R = 1.5: These timings indicate that an 
order of magnitude improvement is achievable with explicit vectorization. (See 
Table I.) 

A. Neighbor Lists 

Vectorization of the algorithm for finding neighbors concentrated on the 
procedures for determining the intersection of the X, Y, and Z ranges of each par- 
ticle. It is based on two vector functions: (“gather”) QSVGATHR and (“compress”) 
QSVCMPRS. The “gather” function specifies that a vector is to be tilled with values 
from a second vector, and the values in the new vector are to be arranged according 
to an index contained in a third vector. Thus. the statement 

U = QEIVGATHR(V, I; U) 
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TABLE I 

CYBER 205 Timings 

Execution time/Time steps (s) 

Program segment Scalar version Vector version 

Neighbor table update 
Sorting 
Acceleration calculation 

Total tlme/tlme step 
With neighbor table update 
Without neighbor table update 

0.98 0.07 
0.06 0.01 
0.22 0.04 

1.29 0.14 
0.31 0.07 

assigns values to sequential locations in vector U from locations in vector V. Index 
I indicates the locations in V from which values are taken so that the effect is the 
assignement U(J) = V(I(J)). For example, for 

v= [l.O, 3.4, 7.1, 9.51 

I= [3, 1, 1,2] 

U will be assigned the values 

u= [7.1, 1.0, 1.0, 3.41. 

The “compress” function is similar to “gather” except that the index vector 1 is 
replaced by a bit array B. In this case, U is assigned from the values of V for which 
the corresponding entry in B is “1.” (See Fig. 5.) 

Finding neighbors of a particle i consists of a series of “compress” and “gather” 
functions using arrays LOCX, LOCY, and LOCZ, and ranks RGY and RGZ. The 

I Y u B Y U 

U = QSVCMPRSb’,B;U) 

FIG. 5. “Gather” and “compress.” 
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process begins by setting a bit vector BT from the X-indices JBS, and JES,. The 
statements 

N = (number of particles ) 
BT(l:N)=B’O’ 
JBU = JBS(1) 
JEU = JES(1) 
LN=JEU-JBU+l 
BT( 1: LN) = LOCX(JBU; LN).NE.I 

set BT, to 1 for JBS,<j< JES, and LOCXj # i, and “0” otherwise. If the interval 
[JBU, JEU] crosses a periodic boundary, we have JEU < JBU, so that the test 
becomes 

BT( 1; JEU) = LOCX( 1; JEU).NE.I 
LN=N-JBU+l 
BT(JBU; LN) = LOCX(JBU; LN).NE.I. 

X-neighbors of particle i are placed in a list designated DNBRX using a “compress” 
from LOCX according to BT: 

DNBRX = Q8VCMPRS (LOCX( 1; N) JBT; DNBRX). 

Y-locations of the X-neighbors are obtained using a “gather” from RGY according 
to DNBRX: 

DLNBR = Q8VGATHR (RGY( 1; N), DNBRX; DLNBR). 

Now DLNBR contains a list of the Y-rankings of the X-neighbors. These rankings 
are compared with the Y-indices for particle i, KBS,, a,nd KES,, and the bit vector 
BT is set to reflect the results of these tests: 

NNX = (number of X-neighbors ) 
KBU = KBS(1) 
KEU = KES(1) 
BT( 1; NNX) = (KBU.LE.DLNBR).AND.(KEU.GE.DLNBR). 

For the periodic boundary condition with KBU > KEU, the test becomes 

BT(l; NNX) = (KBU.LE.DLNBR).OR.(KEU.GE.DLNBR). 

X-Y neighbors of particle i are obtained with a “compress” from DNBRX, the X- 
neighbors, into DNBRXY according to BT. Proceeding in a similar manner, a 
second “gather” from RGZ to DLNBR according to DNBRXY gives the Z- 
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rankings of the X-Y neighbors. These are compared with Z-indices for particle i, 
MBS,, and MES,, and BT is set to reflect the results. Tbe final ‘“compress” from 

NBRXY according to BT yields the list of particles in the set 

[JIB,, JES,] n [KBS,, KES,] n [MBS,, MES,]. 

The timings labeled “neighbor table update” include the time to find the intersec- 
tion and to enter the neighbors in the output table, but do not include sorting time 
or time to determine the arrays of indices. Thus, these timings reflect precisely the 
effect of the modification described. 

B. Sorting 

The “smoothsort” algorithm is based on sequential procedures and cannot be 
restructed to take advantage of parallelism. Consequently, a different sorting 
algorithm, the Batcher sort, was selected for the vectorized implementation. The 
Batcher sort is similar to “Diamondsort” [4]. It uses operations which are highly 
compatible with parallel computation techniques and are relatively straightforward 
to implement with vector FORTRAN. 

C. Acceleration Calculation 

The last segment to which vectorization was applied is the acceleration com- 
putation. The acceleration algorithm uses a table look-up and an interpolation 
procedure to determine acceleration as a function of the distance between particles. 

Implementation of the algorithm for acceleration with vector arithmetic requires 
modification of two data structures. First, rather than string them in a l-dimen- 
sional array, the lists of neighbors are described by a 2-dimensional table in which 
the neighbors of particle i are listed in row i. Since every particle has at least some 
neighbors, the initial columns of the neighbor list will contain entries for every par- 
ticle. Thus, the vector computation can be implemented via column-wise 
operations. Incremental acceleration is calculated in parallel for each particle with 
respect to the neighbors in a single column of the neighbor list. Corrections for the 
final “incomplete” columns are done in scalar mode. 

In the scalar code, the periodic boundary conditions must be queried each time a 
distance between two particles is calculated. The resulting conditionals make 
implementation of the distance calculations with vector arithmetic awkward, if not 
impossible. In our alternative method, six additional arrays store the status of each 
particle with respect to the boundary conditions. The contents of these arrays are 
updated in the neighbor algorithm as it determines the indices (JBS, JES, etc.) par- 
ticle. In fact, these arrays are obtained merely by saving values of the terms ADDX, 
etc., which are mentioned in Section 2. As a result, the first part of the neighbor 
algorithm (sorting and updating boundary conditions) is executed at each time 
step, even though it may not be necessary to construct a new neighbor list. Values 
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in the six arrays are 0 or 1, depending on whether the corresponding particle has 
neighbors which result from the periodic boundaries. Thus 

XA,=l if some of the neighbors of particle i 
in the positive direction lie across 
the periodic boundary, 

=o otherwise 

and similarly, 

x3,= 1 if some of the neighbors of particle i 
in the negative direction lie 
across the periodic boundary, 

=o otherwise 

(see Fig. 6). 
In computing distances between particles, XA, = 1 and XS, = 1 for particles i and 

j implies that 1 must be added to the difference X, -Xi to account for the boundary 
condition. Similarly, XS, = 1 and XA, = 1 implies that 1 must be subtracted from 
the difference. It is assumed that R is small enough that XA, and X5’, cannot 
simultaneously be 1 so that the X-, Y-, and Z-distances between particles i and j 
can be computed using the formulas 

(X,-X,)+(XS,,XA,-XA;Xs,) 

(Yi- Y,)+(YS; YA,- YA,. YS,) 

(2, - 2,) + (ZS, . ZA,- ZA, . ZSJ. 

This eliminates the need for conditional statements in the distance calculation. As 
we mentioned, incremental acceleration is calculated for each particle with respect 
to the neighbors in a single column of the neighbor table. X, Y, Z distance com- 
ponents are computed as above, using a series of “gather” statements for indirect 
addressing from a single column of the neighbor table. This is done by using the 

I I 
XAi’0.0 

XS~‘l.0 i 

“1 XA, = 1.0 

R+6 
xs, = 0.0 

I I 

FIG. 6. Recording boundary conditions. 
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current column of the neighbor list as the index, and then storing the result in a 
temporary vector XT (see Fig. 7). 

Similarly, parameter values for the neighbors are gathered from XA and from X5’ 
and stored in temporary vectors. Element-by-element multiplications, additions, 
and subtractions can then be performed using vector arithmetic statements to eom- 
pute the X, Y, and 2 distance components from each particle to the neighbor in the 
kth column of the neighbor list. 

The table look-up procedure used for the force is somewhat awkward to 
implement with vector statements. It can be accomplished by means of “compress,” 
“gather,” and “expand” functions. The “expand’ function is the inverse of “com- 
press,” depositing data from one array into a larger array according to a bit vector 
index. The table look-up is done by compressing the list of indices which point into 
the table (to eliminate 0 indices), gathering values from the table according to the 
compressed index, and then expanding into the appropriate locations of a working 
array. Since vectorization calculations are invoked only where all entries in a 
column of the neighbor table are non-zero, the effectiveness of vectorization is 
dependent on the current composition of the neighbor list and varies somewhat as 
the neighbor list is rebuilt. 

4. OTHER METHODS 

In this section we discuss briefly some alternate methods for building the table of 
neighbors. We have tested several of these and the others have been treated in the 
literature. None of the methods are obviously vectorizable, but all of them have 
interesting aspects. 

A. Radix Sorting 

For each particle we first compute integer coordinates, 

and then do a radix sort on these coordinates. That is, we put elements in “‘buckets” 

Neighbor 

X XT 

FIG. 7. Column-wise calculation of forces. 
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P+l,Q-I P+l,Q P+l,Q+l 
1 

!=i+6 

P,Q-1 P.0 P,Q+l 

P-l ,0-l P- 1 ,Q P-l ,Q+l 

FIG. 8. P, Q stencil. 

according to the S value; gather up in the S-bucket order; put in buckets according 
to the Q value; gather up in the Q order, etc. The object is to associate each particle 
with its rank in the (P, Q, S) ordering of cells. 

In two dimensions we can think of the P, Q indices as associated with a “stencil” 
of lines (see Fig. 8). A particle in cell P, Q has possible neighbors in that cell and in 
the eight cells in the stencil touching it. 

From the stencil we get a table of neighbors by working with the cell indices to 
search contiguous cells. Pointers keep track of the cell boundaries. One way to do 
to this is to use a pointer to the blocks of indices for cells contiguous to the P, Q 
cell containing particle i so that for particles with cell coordinates P, Q, one needs 
to search the 9-cell stencil, while keeping track of list boundaries using the set of 
nine moving pointers. As usual, some bookkeeping is necessary for cells on the 
boundary. 

In the 3-dimensional case one must search a 27-cell stencil for each particle. For 
“medium sized” problems this a major drawback because, although the radix sort 
has time complexity O(n), we must do a “local” O(n*) search of the stencil. The cost 
of this search again depends on how R varies as a function of ~1. Also, the 
bookkeeping for the periodic boundary conditions increases in the 3-dimensional 
case. It is likely, nevertheless, that radix sorting can be quite efficient for very large 
problems, especially if it is combined with some method for “automatically” deter- 
mining when a cell boundary has been crossed. If position coordinates are com- 
puted in fixed point, for example, boundary crossings can be indicated by the 
changing of a digit in the coordinate value. It is also possible to use much smaller 

t 
Y 

FIG. 9. The algonthm for the method of shadow. 
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cells to refine the (R + 6) x (R + 6) cell, and then keep track of the stencil by a 
method similar to that used to find the boundaries JBS,, JES,, etc., in the method 
of lights. This avoids searching neighboring cells because we can merely store an 
entire (R-I- 6) x (R + 6) cell as in the method of lights. 

Hackney and Eastwood [6] describe a related method which uses linked lists to 
chain together particles in each of the radix cells. In this way sorting is avoided and 
pointers to call boundaries are not needed. However, there is some overhead 
associated with the linked lists, and the use of indirect addressing probably rules 
out vectorization of this algorithm. Rabin [9] uses a mesh of cells of side 
2 x (R + 6) to replace the search of neighboring cells with merges. 

B. The Method of “Shadows” 

This method was inspired by work of Hopcroft, Schwartz and Sharir [7]. In the 
2-dimensional case we first sort the particles in Y order. If we are considering, say, 
particle i, the shadow of i consists of all those j with Y, < Y, and IX, - X,/ < R + 6. 
Among these js, those with Y, - Y, < R + 6 are neighbors of i and all others can be 
discarded. That is, any j such that R + 6 + Yj < Y, cannot possibly be a neighbor of 
a particle with a larger Y coordinate than Y,. On the other hand, particle i itself 
might be a neighbor of particles with larger Y coordinates. Hence, the index i must 
be saved. 

A data structure for dynamic storage allocation efficiently implements the saving 
and discarding of particles during the Y order search. Since it will have to be 
repeatedly searched for shadows of succeeding particles, the data structure should 
be amenable to this range searching. Several such data structures are discussed by 
Bentley and Friedman [ 3 ]. 

We have used 2:3 trees in tests. These are trees such that every internal node has 
either two or three descendants and all leaves have the same depth. We assume that 
the data are stored at the leaves sorted in X-coordinate order from left to right. 
Internal nodes contain information on the range of their descendants. For instance, 
two integers (L, M) can be used to indicate the largest element to be found on the 
left and middle subtrees, respectively. This is enough information to guide the 
search down the tree. Nodes are added and discarded using an “adopting and split- 
ting” algorithm which is discussed in [l] (see Fig. 9). 

st: collect from T all X neighbors of particle i 
ifin Y range of i 
then 

add to i-neighbor queue 
else 

delete from the tree T 
endif 

add particle i to the tree T 
i +- next particle in Y order 
go to st 

581/61/l-11 
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Cr11 CT21 [T31 

FIG. 10. Range search on the tree T. 

In the range search the 2 : 3 tree is used as follows: The X range of particle i can 
be thought of as an interval of X values 9, positioned at the top of the tree T, 
which also represents an interval. The interval 4 must pass down the tree splitting 
into disjoint subintervals which in turn generate two or three more intervals, even- 
tually stopping at nodes whose descendants are the X-neighbors of i. Given 9 and 
T, the general step is: 

If 9 c T, pass down one level by generating new intervals from the sons of T; 
If 5 = T, collect all descendants of C 
If JJ n T= 4, discard this branch in the search. 

(see Fig. 10.) 
For simulations using a few hundred particles, this method is somewhat slower 

than the method of lights. The difference in time is probably due to the extra 
overhead involved in handling the tree. On the other hand, for larger simulations 
on scalar machines the method of shadows may be attractive because the ongoing 
deletion of nodes prevents the search tree T from growing too large. 
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